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Abstract — A planar dielectric waveguide having finite periodic rectangu-
lar corrugation is investigated analytically and experimentally, in case of
surface waves propagating at an angle to the corrugation. In analytical
considerations, a finitely corrugated guide is regarded as consisting of
many step discontinuities connected by a length of uniform slab waveguide,
and its propagatlon characteristics in the Bragg interaction region are
derived from a cascaded connection of the transmission matrix expressing
a step discontinuity. Although the present method takes only surface wave
modes into account and neglects the wave with continuous spectrum, the
calculated results show an excellent agreement with experimental ones
which are performed for ani H-guide in the microwave region,

I. INTRODUCTION

HE PERIODIC corrugations placed on top of dielec-

tric waveguides are widely used in the millimeter-wave
and optical-wave regions as filters, resonators, grating cou-
plers, leaky wave antennas, and so on [1]. The analyses of
such corrugations have been mainly performed by the
approximate method [2]-[5], based on the coupled mode
equations valid for small periodic perturbations, and also
the more rigorous method [6], [7], based on the space
harmonic expansion of waves according to the Floquet’s
theorem. However, these methods are essentially effective
only for waveguides having infinite periodic corrugation.
Seeing this fact from the viewpoint of practical component
design, these methods give no necessary information about
the effects of the length or the periodic number of corruga-
tion, even if the boundary conditions relating to the finite
length are introduced into the coupled mode equatlons as
seen in [4].

One attractive approach to solving this problem has
been presented by Rozzi ef al. [8], [9]. They considered a
wave propagating normal to the corrugation, and regarded
the finite periodic corrugation as a cascade of the step
discontinuities. They derived its characteristics from the
accurate finite network description for such cascades.

More recently, unlike a surface wave propagating normal
to the corrugation, the effects of a surface wave propa-

gating at an angle to the corrugation are utilized in certain

sophisticated components for integrated optics, e.g., the
Bragg deflector [10] and the chirped-grating demultiplexer
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[11]. One can also encounter such an oblique propagation
of millimeter waves in corrugated dielectric image guides
with small dimensions comparable to the wavelength. In
the case of oblique propagation, Peng and Oliner [12] have
pointed out that it is necessary to consider the mode
conversion between different polarizations, i.e., the cou-
pling between TE and TM waves. Wagatsuma et al. [13]
and Shiao et al. [14] have analyzed this problem by modify-
ing slightly the coupled mode equations and by using the
space harmonic expansion method, respectively. However,
these methods again assume the infinite periodic structure
as mentioned above. From the practical point of view, the
analysis of finite periodic corrugation for oblique guidance
seems to be more important. The application of Rozzi’s
method to this problem may be difficult because his method
is effective only for a case in which a surface wave propa-
gates normal to the corrugation.

Thus, in this paper, we present the approximate analyti-
cal method for planar dielectric waveguides with finite
periodic corrugation in which the wave propagates at an
angle to the corrugation. This method is based on the
oblique incident problem of the surface wave onto the step
discontinuity. The finite periodic corrugation is treated in a
cascaded connection of the step discontinuities as seen in
Rozzi’s approach. When a corrugation is operated in the
stopbands corresponding to the Bragg reflection, the struc-
ture of practical components may be chosen so that the
unwanted radiation occuring at the step discontinuity may
become small. Then, disregarding the interaction via the
continuous spectrum, it may be expected that the present
method treating only surface waves results in a good
approximation for the propagation characteristics in the
stopband regions. In fact, the scaled experiments which are
performed by using the corrugated H-guide in the 10-GHz
region will satisfactorily prove the usefulness of the present
method.

II. ANALYSIS

A. Transmission Matrix for the Step Discontinuity

As described in the previous section, it is necessary first
to analyze a step discontinuity problem in which the surface
wave mode is obliquely incident onto it. The discontinuity
that we are concerned with here is depicted in Fig. 1. The
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Fig. 1. (a) Pictorial representation of the step discontinuity in a dielec-
tric slab waveguide, where the TE surface wave mode is incident
obliquely to the step at an angle 6. (b) Its top view indicating rela-
tionship between the two coordinate systems.

slab guide 1, on the left-hand side, has the thickness #,, and
the slab guide 2, on the rlght -hand side, has the thickness ¢,
(< t,). For simplicity, it is assumed that both slab guides
can support only the lowest TE and TM surface wave
modes, and the negligible radiation occurs at a step discon-
tinuity. The latter assumption may be valid when the
thickness ratio ¢, /t, is nearly equal to unity. Furthermore,
the succeeding analysis will assume the oblique incidence
of the TE surface wave mode at an angle § onto the step
discontinuity from the left-hand side of the structure as
shown in Fig. 1(a).

Referring to [15], the fields of a TE and a TM surface
wave modes in the (x, y,z) coordinates can be easily
obtained by the coordinate transformation from the eigen-
coordinate system (x’, y, z") in which the x’ coordinate
indicates the propagation direction of an incident surface
wave mode as shown in Fig. 1(b). The fields in the (x, y, z)
coordinates have five components (E, =0 for TE, H, =0
for TM), and the tangential componcnts to the yz plane at
x = 0 can be given in each guide as follows:

Guide 1

E Ul()’)

r 2( )
E,=(1+R)Z U, (y)—Cr—F— 2( ) V()

—(1-R)U\(»)

Hzl=*(1_R)Zz1V1()’)—CRzll71(J’)- (1)
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Guide 2
=Cr——— 2()’)
2( )
Hy2=“TU‘2(y)
HzZ = TZxZI/2(y)+ CTY;2(72()}) (2)
where
ZXI = ZSlcos i ZZI = ZSlSinal ZSl - w”o/kSl
_xt=)7;tcoso_i —zz::ziSIng: Ysz:‘*’fo/km
1 U _ 1 9T,
“oJule 9y 1 Jugo 9y (3)
and
n Oz2yzy
= - 4
n () {nl, O<y=t, (i=1,2). (4)

In these expressions, the overbar is used to denote quanti-
ties for TM modes; U,(y) and T(y) are the normalized
transverse modal functions (see, for example, [16, ch. 8.3]);
k,, and k_, are the longitudinal propagation constants of
surface modes in the slab guide. R and T denote the
amplitude reflection and transmission coefficients of the
incident TE mode, respectively, while Cr and C; denote
the amplitude coupling coefficients of the incident TE
mode to the TM surface wave modes with the opposite
polarization in guides 1 and 2, respectively.

Tt is noted that for the scattering problem under consid-
eration here, the wavenumber k, in -the z direction is
already known through the parameters k; and 8 of the
incident TE mode, so that the angles of reflection and
transmission for every TE or TM mode are determined
through the following Snell’s law:

k,=k,sind, =k (5)

This relation means that the magnitudes of unknown coef-
ficients should be solved by taking these peculiar angles of
propagation into account carefully. For this purpose, it is
necessary to normalize the modal functions U and U, in the
following fashion:

in<(]i$l[i>=}_fxi< 1 2(—)> 1 (i=1,2) (6)

where

o8iné, =k sinf, =k ,sind,.

@ty =[" 00, ™)

Equation (6) demands the power flow along the x axis to
be unity per unit width of z.

The unknown coefficients R, T, Cp, and Cr can be
solved from the condition that the field components in the
yz plane in both guides 1 and 2 must be continuous at the
discontinuity plane at x = 0. After taking the inner product
of each continuity condition of four tangential field com-



_ TSUNI et al.: GUIDED-WAVE EXPERIMENTS WITH DIELECTRIC WAVEGUIDES

ponents with U, ér U,, and performing a number of
algebraic procedures, the coefficients can be solved as
follows:

1+R _Z, .= U \ = v,
=5t V5 ) | Uy =
-k~ Z, < REHEIY R R TEY
1-R
T=—5——v
Zx1<U1’U2>
Cr=¢(1-R)
Cr=n(1-R) (8)
where

v« .5 | 77 0, (

=qnY,{ U, —=- ). 9
§ 77x1< ln%(y)> ()

Next, let us express a step discontinuity in a transmis-
sion matrix by using these coefficierits. For simplicity, we
shall first derive a scattering. matrix with 4X4 elements
shown in Fig. 2. The incidence of the TE mode from the
left-hand side corresponds to the situation that only the
incident wave a, exists (i€, a,=a;=a;=0), and four
elements of the scattering matrix S,,;(m =1,2,3,4) can be
obtained as follows: ‘

S11=R,321$CR ,
$3=T S,;=Cr. (10)

Following the same method, the other cleﬁlehts'S,,;,,(n =
1,2,3,4) of the scattering matrix can be obtained by con-
sidering the TM-mode iricidence from guide 1 and also the

incidence of each type mode from guide 2. Hereafter, for

convenience sake, the transmiission matrix will be used
-instead of the scattering matrix derived above.
B. Analysis of the Finite and Infinite Periodic Corrugations
As shown in Fig. 3, a pericdic rectangular corrugation
on the surface of a dielectric slab may be viewed as
consisting of many step discontinuities connected by. a
length of uniform slab. waveguide. The propagation char-
acteristics for the periodic corrugation may- be calculated
by a cascaded connection of the transmission matrices of
both the discontinuity and the uniform slab. Such an
approximate approach is valid for the case when only the
propagating surface waves are taken into account. This
assumption will be followed throughout this paper. Now,
denoting the transmission matrices of the nth discontinuity
and the nth uniform slab by T, and 7,.,, respectively, one
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Fig. 3. Diéleét;‘ié slab waveguide with finite periodic corfugation. T2,
means the transmission matrix.of nth unit cell and the finite corruga-
tion is expressed by the cascaded connection of T2, (n=1,2,---,N,).

can define a unit cell or a building block constructed by
wnit = Lono1"T1.2,—1° T35 T).5, @8 shown in Fig. 3. Then
the transmission matrix 7., for the finite periodic corru-

gation consisting of N, unit cells can be given as follows:

(11)

For example, in case of the TE surface mode incidence
from one side, the reflection coefficient R, ;, the transmis-
sion coefficient T, and the coupling coefficients Criotal
and Cr, to the TM mode can be obtained as follows:

unit *

- . N,
; — n
Ttotal_ T
n=1

= T3~ 3Ty

Rtotal AT
,,
— 33
T;otal - Ar
Co =TT T T
Rtotal A'T
YTy ; . 5
Criowm = — Ar (A” =T\T33 — 1'137'31) , (12)

where 7,,, is.an element of the transmission matrix .

_ On the other hand, the infinite periodic corrugation can
be regarded as an infinitely cascaded connection of the
unit cell as described before. Then the transmission char-
acteristics of infinite periodic corrugation can be obtained
by applying the Floquet’s theorem to a unit cell and by
solving the following eigenvalue equation:

| Ty — €™ "1 =0

where I' = a + jB is the propagation constant to be solved,
d is the period of the corrugation, and 1 means the unit
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Fig. 4. H-guide with finite periodic corrugation.

matrix. This approach will be compared numerically with
an alternative one presented by Peng [17].

C. H-Guide Having a Periodic Corrugation

We have discussed so far the oblique incident problem
for the corrugated dielectric slab waveguide. Such a prob-
Jem is applied to a structure easily prepared at X-band, i.e.,
the corrugated H-guide shown in Fig. 4. If the metal wall
separation a of the H-guide is properly chosen, each build-
ing block with uniform thickness ¢, or ¢, can support
TE,;;, TM,,;, and TE ,, modes." In this case, the wave-
number k, in the z direction is fixed to 7/a for the first
two modes, while k, of the TE ,,; mode is equal to zero.
The situation given by k, = 0 can be identified with the
oblique incidence of the surface wave to the discontinuity
at the angle 6 which is given by 6=sin"'(k,/k )=
sin™!(7/k,a). Therefore, there is necessary coupling be-
tween TE,;; and TM,;; modes.

On the other hand, these modes are orthogonal to the
TE () mode in a functional sense over the yz cross section.
So, the corrugated H-guide will be numerically and experi-
mentally investigated by considering only TE,;; and TM
modes in the following sections.

I11.

Before discussing the accuracy of our analytical ap-
proach by scaled experiments in the 10-GHz region,
numerical discussions are first presented in this section.
Fig. 4 shows the construction of the corrugated H-guide
which consists of both a polyethylene (n,=1.52) as a
dielectric and copper plates as the metal walls. The thick-
nesses of the polyethylene are chosen to be r; =12 mm and
t, =10 mm, and the wall separation is chosen to be a = 20
mm. The period of the corrugation is chosen to be d, =d,
=d /2 =9 mm so that the stopbands corresponding to the
Bragg reflection occur in the 10-GHz region. For this
structure, the H-guide having uniform thickness ¢, or ¢, can
support three modes, i.e., TE q;, TE ;;, and TM,;; modes.
As described in the previous section, it is sufficient to take

NUMERICAL RESULTS

."TI*;ypq (TM, ;) mode denotes TE (TM) mode with respect to the y
direction, and "the subscript p relates to pa/a, while ¢ indicates the
number of extrema of E, (H,) component in the y direction.
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only TE ;; and TM ;; modes into account in the analysis.

Fig. 5 shows a portion of the dispersion curve calculated
from (13) for the H-guide with the infinite periodic corru-
gation. These curves denoted in the

w _Bd

27 27w
form are limited in the first stopband region. It is seen that
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Fig. 7. Frequency characteristics of transmitted power of the TM,,
mode for the finite periodic case.

four stopbands appear here, one due to TE,;;-TE ,; cou-
pling, another due to TM ;;-TM,;, coupling, and two
others due to coupling between TE |, and TM,;; modes. It
is confirmed that these calculated results agree well with
the results of Peng’s method indicated with dots, so we can
recognize that the transmission matrix of a unit cell of the
periodic corrugation is successfully obtained by the present
method. Using this transmission matrix, the propagation
characteristics for the finite periodic case can be calculated
from its cascaded connection, and the typical results
calculated for TM ;;~TM,;, coupling and also for
TM,,,-TE ;, coupling regions are shown in Fig. 6(a) and
(b), where the number of unit cell N, is a parameter. These
figures show clearly the effect of N, on the propagation
characteristics, which approach those for infinite periodic
corrugation, i.e., N,=oo with N, increasing. From these
results, the characteristics of transmitted power of the
TM,,, mode can be easily obtained and are shown in Fig.
7. It is found from this figure that both TM,;,~TE,;; and
TM,,,-TM,,; couplings in case of N, =20 have weak
effects on the propagation characteristics of the TM,,
mode, while the coupling in case of N,=100 becomes so
strong that the two distinct stopbands appear.

IV. EXPERIMENTS

A. Experimental Setup

The experimental setup for measuring the transmission
and the reflection characteristics in the 10-GHz region is
shown schematically in Fig. 8(a), where the construction of
the H-guide tested is the same as that described in Section
I11. In this setup, the H-guide is 40 cm wide and 250 cm
long, and the corrugation is located at the center of the
guide. The power from the microwave oscillator is launched
into an H-guide through a mode launcher which excites the
TM,,; mode.

The transmission characteristics of the TM,;; mode can
be obtained by measuring the ratio of the output power of
the H-guide with a corrugation to that without it. Also, the
reflection characteristics of the TM ,;; mode can be ob-
tained by measuring the ratio of the reflected power of the
corrugated H-guide terminated with a matched load to that
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N,=20, (b) N,=30, and (c) N,=40. The reflection peak occurs at
around 9.35 GHz.

of the uncorrugated H-guide terminated with a short cir-
cuit. However, when it is necessary to measure the reflected
power of the TE,;; mode, the method mentioned above
cannot be followed because the polarization converted
TE,;; mode is not detected through the TM ,-mode
launcher. Therefore, we prepared a 1-mm slit on one of the
copper plates at the position near the launching horn,
perpendicular to the propagation direction of an H-guide,
and a small pyramidal horn antenna was used to measure
the relative power of reflected TE ;;, mode radiated in
space. As easily understood, the wall current of the TM,,;,
mode has no component along the propagation direction,
so that the incident TM ,;; mode can propagate without the
influence of a slit, and only the reflected TE ,;; mode can
selectively radiate from the slit.

On the other hand, the measurement of the phase con-
stant of the TM,;; mode is performed by the experimental
setup shown in Fig. §(b). The phase constant can be
obtained from the difference of the phase shifts between
the corrugated and the uncorrugated H-guides.

B. Experimental Results

Fig. 9(a), (b), and (c) shows the characteristics of trans-
mitted power of the incident TM ,;; mode for N, = 20, 30,
and 40, respectively, where the solid lines indicate the
measured values and the dashed lines indicate the theoreti-
cal ones by the present method. From these figures, we can
observe two stopbands in this frequency region, and all of
these cases show the good agreement between the theoreti-
cal and the experimental values. The center frequencies at
two stopbands are very accurately predicted, whereas their
dips are slightly different between both values. This small
discrepancy may be caused by the influence due to the
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neglected radiation field which occurs at the corrugations.
Although it is obvious from the theoretical predict-
ion that the measured stopbands at 9.01 GHz and 9.35
GHz are identified with the TM,;,-TE ;; coupling and
T™M,,,—-TM,;; coupling, respectively, we shall next confirm
experimentally their couplings by measuring the reflected
power of each type of modes. Fig. 10(a), (b), and (c) shows
the characteristics of reflected power on the incident TM
mode for N, = 20, 30, and 40, where the solid lines indicate
the measured values and the dashed lines indicate the
theoretical ones. On the other hand, Fig. 11(a), (b), and (c)
shows the characteristics of relative power of the reflected
TE,,;, mode for N, =20, 30, and 40. In these figures, the
maximum value of the relative power measured for N, = 20
is normalized so as to coincide with that of the theoretical

one indicated by the dashed line. Now, overlapping these

reflection characteristics on the transmission ones of Fig. 9,
it is clearly proven that the stopband around 9 GHz is
caused by TM,,,,~TE ,, coupling, while that around 9.35
GHz is caused by TM ,;;~TM;; coupling.

Finally, Fig. 12(a) and (b) shows the measured phase
constants of the TM ;; mode for N, =20 and 40. Espe-
cially, the enlargements around two coupling regions are
depicted in Fig. 13(a) and (b) for N = 40. It is clear that
the measured values for the finite periodic case are found

2]
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to be different from the dispersion characteristics for the
infinite periodic case indicated by the dashed line, and
show a fairly good agreement with the solid line calculated
by the present method.

V. CONCLUSION

The analytical method for an open dielectric waveguide
with the finite periodic corrugation is presented. In this
approximate method, the step discontinuity in a planar
dielectric waveguide is expressed by a transmission matrix
for waves guided obliquely to the discontinuity, and the
finite periodic corrugation is regarded as its cascaded con-
nection. Although the analysis is roughly approximated by
treating only a surface wave mode and by neglecting
radiation waves, the calculated results sufficiently explain
the experimental ones of the propagation characteristics at
the stopbands due to the Bragg reflection. The present
method will become one of straightforward and effective
methods for investigating the propagation characteristics of
an open dielectric waveguide with finite periodic corruga-
tion.
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Hybrid Modes in Circular Cylindrical
Optical Fibers

KATSUMI MORISHITA, MEMBER, IEEE

Abstract —The classification of hybrid modes in circular cylindrical
optical fibers is studied. It is shown that problems of the mode classifica-
tions, i.e., the crossover of the dispersion characteristics and the remarka-
ble changes of the polarization states and the field configurations, are
caused by the coupling of the HE-type and EH-type modes.

I. INTRODUCTION

ECENTLY, various optical fibers, including multi-
mode fibers, single-mode fibers, single polarization
fibers, and dual-mode fibers, have been produced. In gen-
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eral, propagation modes supported by multimode fibers are
called linearly polarized (LP) “modes” [1], which are not
true modes. In case the optical fibers have few propagation
modes, the difference between the corresponding true
modes for each LP “mode” is of practical importance for
calculating fiber bandwidths and designing fibers [2]. The
descriptive names TE, TM, HE, and EH are usually used
for distinguishing propagation modes. There are several
classifications of hybrid modes, which are based on the
amplitude coefficient ratio of axial components of electric
and magnetic fields [3], [4], the polarization states [5], [6]
and the field configurations [7] of propagation modes, and
the factorization of characteristic equations [8], [9].
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