
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-31, NO. 4, APRIL 1983 337

Guided-Wave Experiments with Dielectric
Waveguides Having Finite Periodic

Corrugation

MIKIO TSUJI, MEMBER, IEEE, SOICHI MATSUMOTO, STUDENT MEMBER, IEEE, HIROSHI SHIGESAWA,

MEMBER, IEEE, AND KEI TAKIYAMA, MEMBER, IEEE

Abstract —A planar dielectric waveguide having finite periodic rectangu-

lar corrugation is investigated armfytically and experimentally, in case of

surface waves propagating at an angle to the corrugation. In amdyticaf

considerations, a finitely corrugated guide is regarded as consisting of

many step diseontimdties conneeted by a length of uniform slab waveguide,

and its prop&ation characteristics in the Bragg interaction region are

derived from a cascaded connection of the transmission matrix expressing

a step discontinuity. Although the present method takes only surface wave

modes into account and negleets the wave with continuous spectrum, the

calculated results show an excellent agreement with experimental ones

which are performed for art H-guide in the microwave region.

I. INTRODUCTION

T HE PERIODIC corrugations placed on top of dielec-

tric waveguides are widely used in the millimeter-wave

and optical-wave regions as filters, resonators, grating cou-

plers, leaky wave antennas, and so on [1]. The analyses of

such corrugations have been mainly performed by the

approximate method [2]–[5], based on the coupled mode

equations valid for small periodic perturbations, and also

the more rigorous method [6], [7], based on the space

harmonic expansion of waves according to the Floquet’s

theorem. However, these methods are essentially effective

only for waveguides haying infinite periodic corrugation.

Seeing this fact from the viewpoint of practical component

design, these methods give no necessary information about

the effects of the length or the periodic number of corruga-

tion, even if the boundary conditions relating to the finite

length are introduced into the coupled mode equations as

seen in [4].

One attractive approach to solving this problem has

been presented by Rozzi et al. [8], [9]. They considered a

wave propagating normal to the corrugation, and regarded

the finite periodic corrugation as a cascade of the step

discontinuities. They derived its characteristics from the

accurate finite network description for such cascades.

More recently, unlike a surface wave propagating normal

to the corrugation, the effects of a surface wave propa-

gating at an angle to the corrugation are utilized in certain

sophisticated components for integrated optics, e.g., the

Bragg deflector [10] and the chirped-grating demultiplexer
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[11]. One can also encounter such an oblique propagation

of millimeter waves in corrugated dielectric image guides

with small dimensions comparable to the wavelength. In

the case of oblique propagation, Peng and Oliner [12] have

pointed out that it is necessary to consider the mode

conversion between different polarizations, i.e., the cou-

pling between TE and TM waves. Wagatsuma et al. [13]

and Shiao et al. [14] have analyzed this problem by modify-

ing slightly the coupled mode equations and by using the

space harmonic expansion method, respectively. However,

these methods again assume the infinite periodic structure

as mentioned above. From the practical point of view, the

analysis of finite periodic corrugation for oblique guidance

seems to be more important. The application of Rozzi’s

method to this problem maybe difficult because his method

is effective only for a case in which a surface wave propa-

gates normal to the corrugation.

Thus, in this paper, we present the approximate analyti-

cal method for planar dielectric wav~guides with finite

periodic corrugation in which the wave propagates at an

angle to the corrugation. This method is based on the

oblique incident problem of the surface wave onto the step

discontinuity. The finite periodic corrugation is treated in a

cascaded connection of the step discontinuities as seen in

Rozzi’s approach. When a corrugation is operated in the

stopbands corresponding to the Bragg reflection, the struc-

ture of practical components may be chosen so that the

unwanted radiation occuring at the step discontinuity may

become small. Then, disregarding the interaction via the

continuous spectrum, it may be expected that the present

method treating only surface waves results in a good

approximation for the propagation characteristics in the

stopband regions. In fact, the scaled experiments which are

performed by using the corrugated H-guide in the 1O-GHZ

region will satisfactorily prove the usefulness of the present

method.

II. ANALYSIS

A. Transmission Matrix for the Step Discontinuity

As described in the previous section, it is necessary first

to analyze a step discontinuity problem in which the surface

wave mode is obliquely incident onto it. The discontinuity

that we are concerned with here is depicted in Fig. 1. The
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Fig. 1. (a) Pictorial representation of the step discontinuity in a dielec-
tric slab waveguide, where the TE surface wave mode is incident
obliquely to the step at an angle 9. (b) Its top view indicating rela-
tionship between the two coordinate systems.

slab guide 1, on the left-hand side, has the thickness tl, and

the slab guide 2, on the right-hand side, has the thiclcpess t2

( < t,). For simplicity, it is assumed that both slab guides
can support only the lowest TE and TM surface wave

modes, and the negligible radiation occurs at a step discon-

tinuity. The latter assumption may be valid when the

thickness ratio tl /t2 is nearly equal to unity. Furthermore,

the succeeding analysis will assume the oblique incidence

of the TE surface wave mode at an angle 13onto the step

discontinuity from the left-hand side of the structure as

shown in Fig. l(a).

Referring to [15], the fields of a TE and a TM surface

wave modes in the (x, y, z) coordinates can be easily

obtained by the coordinate transformation from the eigen-

coordinate system (x}, y, z’) in which the x’ coordinate

indicates the propagation direction of an incident surface

wave mode as shown in Fig. l(b). The fields in the (x, y, z)

coordinates have five components (EY = O for TE, HY = O

for TM), and the tangential components to the yz plane at

x = O can be given in each guide as follows:

Guide 1

E,, = (l+ R)zx,u, (y)–cR ~~l~(y)
n?(y)

Hy, =–(l– R)u,(y)

H,i = –(l– R)zz,v, (y)–cR~,q(y). (1)

Guide 2

HY2 = – T~(y)
.—

Hzz = – TZX2V2 (y)+ C#X2U2 (y) (2)

where

ZXi = Z,, cos 6, Z,, = Z,, sine, Z,, = up O/k,l

~,= ~,cos~ ~,= ~isin~ E,= UCO/C,,

(3)

and

In these expressions, the overbar is used to denote quanti-

ties for TM modes; ~.(y) and ~(y) are the normalized

transverse modal functions (see, for example, [16, ch. 8.3]);

k., and ~,, are the longitudinal propagation constants of

surface modes in the slab guide. R and T denote the

amplitude reflection and transmission coefficients of the

incident TE mode, respectively, while CR and CT denote

the amplitude coupling coefficients of the incident TE

mode to the TM surface wave modes with the opposite

polarization in guides 1 and 2, respectively.

“It is noted that for the scattering problem under consid-

eration here, the wavenumber kz in the z direction is

already known through the parameters k,i and 8 of the

incident TE mode, so that the angles of reflection and

transmission for every TE or TM mode are determined

through the following Snell’s law:

k== k,l sin~l = k,2sin8z = ~~1sin~l = ~.2sin&. (5)

This relation means that the magnitudes of unknown coef-

ficients should be solved by taking these peculiar angles of

propagation into account carefully. For this purpose, it is

necessary to normalize the modal functions ~ and ~ in the

following fashion:

() q
‘xi(V~Q)=Ci G,—

=1 (i=l,2) (6)
n:(Y)

where

($i~ $i) = ~~m+,(y)+i(y) dy.
(7)

Equation (6) demands the power flow along the x axis to

be unity per” unit width of z.

The unknown coefficients R, T, CR, and CT can be

solved from the condition that the field components in the

yz plane in both guides 1 and 2 must be continuous at the

discontinuity plane at x = O.’After taking the inner product

of each continuity condition of four tangential field com-
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ponents with C71 or ~1, and performing a number of

algebrtic procedures, the coefficients can be solved as

follows:

T=
i–R

ZX,(U,,U2)

C,={(l– R)

C~=q(l– R)

where

1

{

() u,
‘ v2,—

z n?(y)
Z2 \

( )~

u,
.—

Zx, (“,, ”2)
–Zzl v,, —

n?(y)

(8)

(9)

Next, let us express a step discontinuity in a transr@-

sion matrix by using these coefficients. For simplicity, we

shall first derive a scattering. matrix with 4 x 4 elements

shown in Fig. 2. The @cidence of the TE mode from the

left-hand side corresponds to the situation that only the

incident wave al exists (i.e., az = a3 = a4 = O), and four

elements of the scattering matrix S~;(m =1,2,3,4) can be

obtained as follows:

S1l=R S21=C~

S3, =T S41= CT. (lo)

Following the, same method, the other elements Sm~(n =

1,2, 3,4) of the scattering mat& can be obtained by con-

sidering the TM-mode incidence from guide 1 and also the

incidence of each type mode from guide 2. Hereafter, for

convenience sake, the transniission matrix will be used

instead of the scattering matrix derived above.

B. Analysis of the Finite and Infinite Periodic Corrugations

As shown in Fig. 3, a periodic rectangulti corrugation

on the surface of a dielectric slab may be viewed as

consisting of many step &.scontinuities connected by a

length of uniform slab waveguide. The propagation char-

acteristics for the periodic tori-ugation may be calculated

by a cascaded connection of the transrr&sion matrices of

both the discontinuity and @e udform slab. Such ari

approximate approach is valid for the case when only the

propagating surface waves are taken into account. This

assumption will be followed throughout this paper. NOW,

denoting the trakission matrices of the nk discontinuity

and the n th uniform slab by Tn and T,. ~, respectively, one
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Fig. 2. Equivalent network for the step discontinuity.

Iuni

Fig. 3. Dielectric slab waveguide with finite periodic corrugation. T&,
means the transmission matrix of n th unit cell and the finite corru~a-
tion is expressed by the cascaded connection of T& (n= 1,2,. ... ~C).

can define a unit cell or a building block constructed by

T:tit = T2n_l. ‘1.2n–l” T2n”. Tl.2n as shown in Fig., 3. Then

the transmission matrix Ttotd for the finite periodic corru-

gation consisting of NCunit cells can be given as follows:

N.

Ttotal= Ii T;tit . (11)
fl=l

For example, in case of the TE surface mode incidence

from one side, the reflection coefficient R ~Otd,the transmis-
. . . . .

sion coefficient TtOtd, and the COt@IIIg COefflCl@S CR ~otd

tid CTtotd to the TM mode can be obtained as follows:

‘rz ~‘r~~ — T23’T~~
R total = AT

?33
T

‘ot& = z

741733 — ’743 — ‘Tj,
cRtotal = AT

c Ttotd = — ~ (AT= ~,173, - ~,,rjl) (12)

where r~~ is an element of the transmission matrix ~tOtd.

On the other hand, the infinite periodic corrugation can

be regarded as an infinitely cascaded connection of the

unit cell as described before. Then the transniission char-

acteristics of infinite periodic corrugation can be obtained

by applying the Floquet’s theorem to a unit cell and by

solving the following eigenvalue equation:

where 17= a + J3 is the propagation constant to be solved,

d is the period of the corrugation, and 1 means the unit
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Fig. 4. H-guide with finite periodic corrugation.

matrix. This approach will be compared numerically with

an alternative one presented by Peng [17].

C. H-Guide Having a Periodic Corrugation

We have discussed so far the oblique incident problem
for the corrugated dielectric slab waveguide. Such a prob-

lem is applied to a structure easily prepared at X-band, i.e.,

the corrugated H-guide shown in Fig. 4. If the metal wall

separation a of the H-guide is properly chosen, each build-

ing block with uniform thickness t, or t2 can support

TEY1l, TMY1l, and TEYO1 modes. 1 In this case, the wave-

number k= in the z direction is fixed to ~/a for the first

two modes, while k= of the TEYO1 mode is equal to zero.

The situation given by k,* O can be identified with the

oblique incidence of the surface wave to the discontinuity

at the angle 0 which is given by O = sin-1 (k= /k,)=

sin- 1(~/k$a). Therefore, there is necessary coupling be-

tween TEY1, and TMY1 ~ modes.

On the other hand, these modes are orthogonal to the

TEYO1 mode in a functional sense over the yz cross section.

So, the corrugated H-guide will be numerically and experi-

mentally investigated by considering only TEY1, and TMY1 ~

modes in the following sections.

III. NUMERICAL RESULTS

Before discussing the accuracy of our analytical ap-

proach by scaled experiments in the 1O-GHZ region,

numerical discussions are first presented in this section.

Fig. 4 shows the construction of the corrugated H-guide

which consists of both a polyethylene (n, = 1.52) as a

dielectric and copper plates as the metal walls. The thick-

nesses of the polyethylene are chosen to be ~1= 12 mm and

tz =10 mm, and the wall separation is chosen to be a = 20

mm. The period of the corrugation is chosen to be d, = d2

= d/2=9 mm so that the stopbands corresponding to the

Bragg reflection occur in the 10-GHZ region. For this

structure, the H-guide having uniform thickness tl or tz can

support three modes, i.e., TEYO1, TEY1 ~, and TM,l, modes.

As described in the previous section, it is sufficient to take

‘ TEYP~ (TMYP~) mode denotes TE (TM) mode with respect to they
direction, and the subscript p relates to p n/a, while q indicates the
number of extrema of E.p(Hy) component in they direction.

9.5
J

Fig. 5. Dispersion characteristics of the H-guide with infinite periodic
corrugation in the Bragg interaction region.
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Fig. 6. Phase and attenuation constants of the H-guide with finite
periodic corrugation around (a) TMY1, –TEY1, and (b) TMY1, –TMY1 ~
coupling regions.

only TEY,, and TMV1, modes into account in the analysis.

Fig. 5 shows a portion of the dispersion curve calculated

from (13) for the H-guide with the infinite periodic corru-

gation. These curves denoted in the

u fid——
2?r 2T

form are limited in the first stopband region. It is seen that
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Fig. 7. Frequency characteristics of transmitted power of the TMYI,
mode for the finite periodic case.

four stopbands appear here, one due to TEY1, –TEY1 ~ cou-

pling, another due to TMY1, –TMY1, coupling, and two

others due to coupling between TEY1 ~ and TMY1, modes. It

is confirmed that these calculated results agree well with

the results of Peng’s method indicated with dots, so we can

recognize that the transmission matrix of a unit cell of the

periodic corrugation is successfully obtained by the present

method. Using this transmission matrix, the propagation

characteristics for the finite periodic case can be calculated

from its cascaded connection, and the typical results

calculated for TMY1, –TMY1, coupling and also for

TMY1, -TEY1 ~ coupling regions are shown in Fig. 6(a) and

(b), where the number of unit cell NC is a parameter. These

figures show clearly the effect of N= on the propagation

characteristics, which approach those for infinite periodic

corrugation, i.e., NC= m with NC increasing. From these

results, the characteristics of transmitted power of the

TMY1, mode can be easily obtained and are shown in Fig.

7. It is found from this figure that both TMY1, –TEY1, and

TMY1 ~-TMY1 , couplings in case of NC= 20 have weak

effects on the propagation characteristics of the TMY1 1

mode, while the coupling in case of NC = 100 becomes so

strong that the two distinct stopbands appear.

IV. EXPERIMENTS

A. Experimental Setup

The experimental setup for measuring the transmission

and the reflection characteristics in the 10-GHZ region is

shown schematically in Fig. 8(a), where the construction of

the H-guide tested is the same as that described in Section

III. In this setup, the H-guide is 40 cm wide and 250 cm

long, and the corrugation is located at the center of the

guide. The power from the microwave oscillator is launched

into an H-guide through a mode launcher which excites the

TMY1, mode.

The transmission characteristics of the TMY1 ~ mode can

be obtained by measuring the ratio of the output power of

the H-guide with a corrugation to that without it. Also, the

reflection characteristics of the TMY11 mode can be ob-

tained by measuring the ratio of the reflected power of the

corrugated H-guide terminated with a matched load to that

~

~rn ..]....................... HO,”

b Cavity
Wavenwer ‘Silt

(a)

! T H- guide

o;lr~t Oilctknal ... .. J..,*,..,,, \,_. ... ....... .. . .. ......... .......
D 0U4er
I

I I
Phase H Isolator

Mag,c
Shifter Tee H Isolator

Fig, 8. Schematic diagram of the experimental setups for (a) measure-
ments of transmitted and reflected powers and for (b) measurement of
the phase constant (the slit shown in (a) is used to measure the reflected
power of TE,l, mode).
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Fig. 9. Measured transmission characteristics of the TMY1, mode for (a)
N, = 20, (b) NC= 30, and (c) NC= 40. Two stopbands appear at around
9 and 9.35 GHz.
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Fig. 10. Measured reflection characteristics of the TMY1, mode for (a)
N== 20, (b) NC= 30, and (c) NC= 40. The reflection peak occurs at
around 9.35 GHz.

of the uncorrugated H-guide terminated with a short cir-

cuit. However, when it is necessary to measure the reflected

power of the TEY1 ~ mode, the method mentioned above

cannot be followed because the polarization converted

TEY1 , mode is not detected through the TMY1 l-mode

launcher. Therefore, we prepared a l-mm slit on one of the

copper plates at the position near the launching horn,

perpendicular to the propagation direction of an H-guide,

and a small pyramidal horn antenna was used to measure

the relative power of reflected TEY1, mode radiated in

space. As easily understood, the wall current of the TMYI ~

mode has no component along the propagation direction,

so that the incident TMY1, mode can propagate without the

influence of a slit, and only the reflected TEY1, mode can

selectively radiate from the slit.

On the other hand, the measurement of the phase con-

stant of the TMY1, mode is performed by the experimental

setup shown in Fig. 8(b). The phase constant can be

obtained from the difference of the phase shifts between

the corrugated and the uncorrugated H-guides.

B. Experimental Results

Fig. 9(a), (b), and (c) shows the characteristics of trans-

mitted power of the incident TMY1, mode for NC = 20, 30,

and 40, respectively, where the solid lines indicate the

measured values and the dashed lines indicate the theoreti-

cal ones by the present method. From these figures, we can

observe two stopbands in this frequency region, and all of

these cases show the good agreement between the theoreti-

cal and the experimental values. The center frequencies at

two stopbands are very accurately predicted, whereas their

dips are slightly different between both values. This small

discrepancy may be caused by the influence due to the

(b)

Ek
a5 9.0 95 lao

Frequency (GHz)

Fig. 11. Measured reflection characteristics of the TEY1, mode for (a)
N== 20, (b) N== 30, and (c) NC= 40. The reflection peak occurs at
around 9 GHz.
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Fig. 12. Measured phase constants of the TMY1, mode for (a) N== 20
and (b) NC= 40 (the enlargement of coupling regions is shown in Fig.
13).
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Fig. 13. Measured phase constants of the TMY1,, mode around (a) the
TMY1 ,–TEY1, and (b) the TMY1, –TMY1, coupling regions (in case of
NC= 40).

neglected radiation field which occurs at the corrugations.

Although it is obvious from the theoretical predict-

ion that the measured stopbands at 9.01 GHz and 9.35

GHz are identified with the TMY1, –TEY1 ~ coupling and

TMY1 ~–TMY1, coupling, respectively, we shall next confirm

experimentally their couplings by measuring the reflected

power of each type of modes. Fig. 10(a), (b), and (c) shows

the characteristics of reflected power on the incident TMY1,

mode for NC = 20, 30, and 40, where the solid lines indicate

the measured values and the dashed lines indicate the

theoretical ones. On the other hand, Fig. 1l(a), (b), and (c)

shows the characteristics of relative power of the reflected

TEY1 ~ mode for NC= 20, 30, and 40. In these figures, the

maximum value of the relative power measured for NC= 20

is normalized so as to coincide with that of the theoretical

one indicated by the dashed line. Now, overlapping these

reflection characteristics on the transmission ones of Fig. 9,

it is clearly proven that the stopband around 9 GHz is

caused by TMY, ~–TEYI, coupling, while that around 9.35
GHz is caused by TMYI ~-TMY1 ~ coupling.

Finally, Fig. 12(a) and (b) shows the measured phase

constants of the TMY1, mode for NC = 20 and 40. Espe-

cially, the enlargements around two coupling regions are

depicted in Fig. 13(a) and (b) for NC= 40. It is clear that

the measured values for the finite periodic case are found

to be different from the dispersion characteristics for the

infinite periodic case indicated by the dashed line, and

show a fairly good agreement with the solid line calculated

by the present method.

V. CONCLUSION

The analytical method for an open dielectric waveguide

with the finite periodic corrugation is presented. In this

approximate method, the step discontinuity in a planar

dielectric waveguide is expressed by a transmission matrix

for waves guided obliquely to the discontinuity, and the ‘

finite periodic corrugation is regarded as its cascaded con-

nection. Although the analysis is roughly approximated by

treating only a surface wave mode and by neglecting

radiation waves, the calculated results sufficiently explain

the experimental ones of the propagation characteristics at

the stopbands due to the Bragg reflection. The present

method will become one of straightforward and effective

methods for investigating the propagation characteristics of

an open dielectric waveguide with finite periodic corruga-

tion.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

C. Elachi, “Waves in active and passive periodic structure: A
review,” Proc. IEEE, vol. 64, pp. 1666-1698, Dec. 1976.
D. Marcuse, Theory of Dielectric Optical Waoeguides. New York:
Academic, 1974, ch. 3.
W. Streifer, D. R. Scifres, and R. D. Burham, “Coupled wave
analysis of DFB and DBR lasersy IEEE J. Qzumtum Electron., vol.

QE-13, pp. 134-141, Apr. 1977.
A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J.
Quantum Electron., vol. QE-9, pp. 919-933, Sept. 1973.
Y. Yarnamoto, T. Kamiya, and H. Yanai, ” Improved coupled mode
analysis of corrugated waveguides and lasers,” IEEE J. Quantum
Electron., vol. QE- 14, pp. 245-258, Apr. 1978.
S. T. Peng, H. L. Bertorri, and T. Tamir, “Analysis of periodic
thin-film structures with rectangular profiles: Opt. Commun., vol.
10, pp. 91-94, Jan. 1974.
S. T. Peng, T. Tamir, and H. L. Bertoni, “Theory of periodic
dielectric waveguides? IEEE Trans. Microwave Theory Tech., vol.
MTT-23, pp. 123-133, Jan. 1975.
T. E. Rozzi, ” Rigorous analysis of the step discontinuity in a planar
dielectric waveguide~ IEEE Trans. Microwave Theory Tech., vol.
MTT-26, pp. 738-746, Oct. 1978.
T. E. Rozzi and G. H. In’tveld, “Field and network analysis of
interacting step discontinuities in planar dielectric waveguides,”
IEEE Trans Microwave Theory Tech., vol. M’fT-27, pp. 303-309,
Apr. 1979.
H. M. Stoll, “Distributed Bragg deflector: A multifunctional in-
tegrated optical devices:’ Appl. Opt., vol. 17, pp. 2562–2569, Aug.
1978.
A. C. Livanos, A. Katzir, A. Yariv, and C. S. Hong, “ Chirped-grat-
ing demultiplexers in dielectric waveguides,” Appl. Phys. Lett., vol.

30, pp. 519-521, May 1977.
J. P. Hsu, S. T. Peng, and A. A. Oliner, “Scattering by dielectric
step discontinuities for obliquely incident surface waves,” in Dig.

URSI Meeting, (College Park, MD), May 1978, p. 46.
K. Wagatsuma, H. ,Sakaki, and S. Saito, “Mode conversion and
opticaf filtering of obliquely incident waves in corrugated waveguide
filters; IEEE J. Quantum Electron., vol. QE-15, pp. 632-637, July
1979.
M. J. Shiao, H. Shigesawa, S. T. Peng, and A. A. Oliner, “Mode
conversion effects in Bragg reflection from periodic grooves in
rectangular dielectric image guide,” in 1981 IEEE MTT S Micro-
waue ,Symp. Dig., (Los Angeles, CA), June 1981, pp. 14– 16.

[15] S. T. Pkng and A. A. Oliner, “Guidance and leakage properties of a
class of open dielectric waveguides: Part 1—Mathematical formula-
tions? IEEE Trans. Microwave Theoy Tech., vol. MIT-29, pp.
843-855, Sept. 1981.

[16] D. Marcuse, Light Transmission Optics. Van Nostrand, 1972, ch.
8.3.



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT31, NO. 4, APRIL 1983344

[17] S. T. Peng, “Oblique guidance of surface waves on corrugated
dielectric layers,” in Proc. Int. URSI Symp, Electromagnetic Waves,

Aug. 1980, paper no. 341B.

*

Mikfo Tsuji (S’77-M82) was born in Kyoto,
Jarmn, on SeDtember 10, 1953. He received the
B.S. &d M.~. degrees in electncat engineering
from Doshisha University, Kyoto, Japan, in 1976
and 1978, respectively.

Since 1981, he has been a Research Assistant
of the Faculty of Engineering at Doshisha Uni-
versity. His research activities have been con-
cerned with submiltimeter-wave and microwave
transmission lines and devices of open structures.

Mr. Tsuii is a member of the Institute of
Electronics and Communication E~gineers (IECE) of Japan.

Soichi Matsumoto (S’81) was born in Osaka,
Japan, on March 22, 1959. He received the B.S.
and M.S. degrees in electncaf engineering from
Doshisha University, Kyoto, Japan, in 1981 and
1983, respectively. He is now with the Mitsubishi
Electncaf Corporation.

Mr. Matsumoto is a member of the Institute
of Electronics and Communication Engineers
(IECE) of Japan.

Hlroshi Sbigesawa (S’62–M63) was born in Hy-
ogo, Japan, on January 5, 1939. He received the
B.S., M. S., and Ph.D. degrees in electrical en-
gineering from Doshisha University, Kyoto,
Japan, in 1961, 1963, and 1969, respectively.

Since 1963, he has been with Doshisha Uni-
versity. From 1979 to 1980, he was a Visiting
Scholar at the Microwave Research Institute,
Polytechnic Institute of New York, Brooklyn,
NY. Currently, he is a Professor at the Faculty of
Engineering, Doshisha University. His present

research activities involve microwave and submillimeter-wave transmis-
sion lines and devices of open structure, fiber optics, and scattering
problems of electromagnetic waves.

Dr. Shigesawa is a member of the Institute of Electronics and Com-
munication Engineers (IECE) of Japan, the Japan Society of Applied
Physics, and the Optical Society of America (OSA).

*

Kei Takiyama (M’58) was born in Osaka, Japan,
on October 20, 1920. He received the B.S. and
Ph.D. degrees in electrical engineering from
Kyoto University, Kyoto, Japan, in 1942 and
1955, respectively.

Since 1954, he has been a Professor of Elec-
tronic Engineering at Doshisha University,
Kyoto, Japan, where he carried out research in
the fields of microwave transmission lines and
opticat engineering. From 1957 to 1958, he was a
Fulbright Scholar and a Research Associate at

the Microwave Research Institute, Polytechnic Institute of Brooklyn, NY.
Dr. Takiyarna is a member of the Institute of Electronics and Com-

munication Engineers (IECE) of Japan, the Institute of Electncat En-
gineers of Japan, and the Opticat Society of America (OSA).

Hybrid Modes in Circular Cylindrical
Optical Fibers

KATSUMI MORISHITA, MEMBER, IEEE

A/retract —The classification of hybrid modes in circular cylindrical
optical fibers is studied. It is shown that problems of the mode classifica-
tions, i.e., the crossover of the dispersion characteristics and the remarka-
ble changes of the polarization states and the field configurations, are

caused by the coupling of the HE-type and EH-type modes.

I. INTRODUCTION

R ECENTLY, various optical fibers, including multi-

mode fibers, single-mode fibers, single polarization

fibers, and dual-mode fibers, have been produced. In gen-
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eral, propagation modes supported by multimode fibers are

called linearly polarized (LP) “modes” [1], which are not

true modes. In case the optical fibers have few propagation

modes, the difference between the corresponding true

modes for each LP “mode” is of practical importance for

calculating fiber bandwidths and designing fibers [2]. The

descriptive names TE, TM, HE, and EH are usually used

for distinguishing propagation modes. There are several

classifications of hybrid modes, which are based on the

amplitude coefficient ratio of axial components of electric

and magnetic fields [3], [4], the polarization states [5], [6]

and the field configurations [7] of propagation modes, and

the factorization of characteristic equations [8], [9].
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